158 research outputs found

    Dose-dense adjuvant chemotherapy for primary breast cancer

    Get PDF
    Adjuvant chemotherapy has been proven to reduce significantly the risk for relapse and death in women with operable breast cancer. Nevertheless, the prognosis for patients presenting with extensive axillary lymph node involvement remains suboptimal. In an attempt to improve on the efficacy of existing chemotherapy, a phase III intergroup trial led by the Cancer and Leukemia Group B (CALGB 97-41) was designed, which tested a mathematical model of tumor growth based on the Norton–Simon hypothesis. This hypothesis, developed about 3 decades ago, and the kinetic model derived from it, created the basis of the concepts of dose density and sequential therapy, both of which were tested in CALGB 97-41. This large prospective randomized trial demonstrated that shortening the time interval between each chemotherapy cycle while maintaining the same dose size resulted in significant improvements in disease-free and overall survival in patients with node-positive breast carcinoma. This finding is highly relevant and has immediate implications for clinical practice

    Predictive value of chemotherapy-induced neutropenia for the efficacy of oral fluoropyrimidine S-1 in advanced gastric carcinoma

    Get PDF
    Myelosuppression that occurs during chemotherapy has been reported to be a predictor of better survival in patients with breast or lung carcinomas. We evaluated the prognostic implications of chemotherapy-induced neutropenia in advanced gastric carcinoma. Data from a prospective survey of oral fluoropyrimidine S-1 for advanced gastric cancer patients in Japan were reviewed. We identified 1055 untreated patients with adequate baseline bone marrow function. During treatment with S-1, a total of 293 (28%) patients experienced grade 1 or higher neutropenia. The adjusted hazard ratio of death for the presence of neutropenia, as compared with the absence of such toxicity, from a multivariate Cox model was 0.72 (95% confidence interval, 0.54–0.95; P=0.0189) for grade 1 neutropenia, 0.63 (0.50–0.78; P<0.0001) for grade 2 neutropenia and 0.71 (0.51–0.98; P=0.0388) for grade 3–4 neutropenia. These findings suggest that the occurrence of neutropenia during chemotherapy is an independent predictor of increased survival in patients with advanced gastric cancer, whereas the absence of such toxicity indicates that the dosages of drugs are not pharmacologically adequate. Monitoring of neutropenia in patients who receive chemotherapy may contribute to improved drug efficacy and favourable survival

    Evolution of Resistance to Targeted Anti-Cancer Therapies during Continuous and Pulsed Administration Strategies

    Get PDF
    The discovery of small molecules targeted to specific oncogenic pathways has revolutionized anti-cancer therapy. However, such therapy often fails due to the evolution of acquired resistance. One long-standing question in clinical cancer research is the identification of optimum therapeutic administration strategies so that the risk of resistance is minimized. In this paper, we investigate optimal drug dosing schedules to prevent, or at least delay, the emergence of resistance. We design and analyze a stochastic mathematical model describing the evolutionary dynamics of a tumor cell population during therapy. We consider drug resistance emerging due to a single (epi)genetic alteration and calculate the probability of resistance arising during specific dosing strategies. We then optimize treatment protocols such that the risk of resistance is minimal while considering drug toxicity and side effects as constraints. Our methodology can be used to identify optimum drug administration schedules to avoid resistance conferred by one (epi)genetic alteration for any cancer and treatment type

    Carmustine and methotrexate in combination after whole brain radiation therapy in breast cancer patients presenting with brain metastases: a retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since 1999, patients presenting with brain metastases (BM) from breast cancer (BC) are treated in our institution with a carmustine (BCNU) - methotrexate (MTX) combination. We report here our clinical experience regarding this combination.</p> <p>Patients and Methods</p> <p>Patients were treated by a combination of BCNU 100 mg/m² on day 1 and MTX 600 mg/m² on day 1 and 15 of a 28 day cycle. Treatment was continued until progression or unacceptable toxicity.</p> <p>Results</p> <p>50 patients were treated between 1999 and 2007. 94% of the patients presented with concomitant extra-cerebral disease. Median number of previous metastatic setting chemotherapy regimens was 2 (0-5). Median number of cycles was 3 (1-20). There were 11 objective responses (23% [95%CI 12-37]) among 48 evaluable patients. Median progression-free survival and overall survival (OS) were 4.2 (95%CI: 2.8-5.3) and 6.9 (4.2-10.7) months respectively, with a one-year OS rate of 32% (20-46). Median Relative Dose Intensity for BCNU and MTX were 0.98 (0.31-1.1) and 0.96 (0.57-1.66) respectively. There were 2 presumed treatment-related deaths. One patient developed febrile neutropenia. Performance status, BS-BM score and presence of liver metastases were associated with OS in univariate analysis.</p> <p>Conclusions</p> <p>This combination appears to be effective and well tolerated in good performance status BC patients presenting with BM.</p

    A phase I/II study of 4 monthly courses of high-dose cyclophosphamide and thiotepa for metastatic breast cancer patients

    Get PDF
    This pilot phase I/II study intended to determine the maximum tolerated dose of cyclophosphamide and thiotepa administered on four consecutive courses with peripheral blood progenitor cell and granulocyte-colony stimulating factor support, as first-line therapy for hormone-refractory metastatic breast cancer patients. Twenty-eight patients were entered in the study. After two courses of epirubicin (120 mg m−2) and cyclophosphamide (2 g m−2) followed by granulocyte-colony stimulating factor injection and leukaphereses, patients received four cycles of cyclophosphamide and thiotepa. Each cycle was followed by peripheral blood progenitor cell and granulocyte-colony stimulating factor supports, then repeated every 28 to 35 days. Six escalating dose levels of cyclophosphamide and thiotepa were planned, beginning at cyclophosphamide 1.5 g m−2 and thiotepa 200 mg m−2. At least three patients were enrolled for each dose level. Eighteen patients completed the study. The maximum tolerated dose was 3000 mg m−2 cyclophosphamide and 400 mg m−2 thiotepa per course. Haematological toxicity was manageable on an outpatient basis and did not increase significantly with dose escalation. Dose-limiting toxicity was chemotherapy-induced immuno-suppression, which resulted in one toxic death and two life-threatening infections. Median times to treatment failure and survival were 11 and 26 months, respectively. Three patients were alive, free of disease 30 months after completion of the study. Such therapy allows for high-dose intensity and high cumulative doses on a short period of time with manageable toxicity

    First-line high-dose sequential chemotherapy with rG-CSF and repeated blood stem cell transplantation in untreated inflammatory breast cancer: toxicity and response (PEGASE 02 trial)

    Get PDF
    Despite the generalization of induction chemotherapy and a better outcome for chemosensitive diseases, the prognosis of inflammatory breast cancer (IBC) is still poor. In this work, we evaluate response and toxicity of high-dose sequential chemotherapy with repeated blood stem cell (BSC) transplantation administered as initial treatment in 100 women with non-metastatic IBC. Ninety-five patients (five patients were evaluated as non-eligible) of median age 46 years (range 26–56) received four cycles of chemotherapy associating: cyclophosphamide (C) 6 g m−2 – doxorubicin (D) 75 mg m−2 cycle 1, C: 3 g m−2 – D: 75 mg m−2 cycle 2, C: 3 g m−2 – D: 75 mg m−2 – 5 FU 2500 mg m−2 cycle 3 and 4. BSC were collected after cycle 1 or 2 and reinfused after cycle 3 and 4. rG-CSF was administered after the four cycles. Mastectomy and radiotherapy were planned after chemotherapy completion. Pathological response was considered as the first end point of this trial. A total of 366 cycles of chemotherapy were administered. Eighty-seven patients completed the four cycles and relative dose intensity was respectively 0.97 (range 0.4–1.04) and 0.96 (range 0.25–1.05) for C and D. Main toxicity was haematological with febrile neutropenia ranging from 26% to 51% of cycles; one death occurred during aplasia. Clinical response rate was 90% ± 6%. Eighty-six patients underwent mastectomy in a median of 3.5 months (range 3–9) after the first cycle of chemotherapy; pathological complete response rate in breast was 32% ± 10%. All patients were eligible to receive additional radiotherapy. High-dose chemotherapy with repeated BSC transplantation is feasible with acceptable toxicity in IBC. Pathological response rate is encouraging but has to be confirmed by final outcome. © 1999 Cancer Research Campaig
    corecore